Quest for the right Drug

|
עמוד הבית / קרסטור ® 40 מ"ג / מידע מעלון לרופא

קרסטור ® 40 מ"ג CRESTOR ® 40 MG (ROSUVASTATIN AS CALCIUM)

תרופה במרשם תרופה בסל נרקוטיקה ציטוטוקסיקה

צורת מתן:

פומי : PER OS

צורת מינון:

טבליות מצופות פילם : FILM COATED TABLETS

Pharmacological properties : תכונות פרמקולוגיות

Pharmacodynamic Properties

5.1      Pharmacodynamic properties
Pharmacotherapeutic group: HMG-CoA reductase inhibitors
ATC code: C10A A07



Mechanism of action
Rosuvastatin is a selective and competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts 3-hydroxy-3-methylglutaryl coenzyme A to mevalonate, a precursor for cholesterol. The primary site of action of rosuvastatin is the liver, the target organ for cholesterol lowering.

Rosuvastatin increases the number of hepatic LDL receptors on the cell-surface, enhancing uptake and catabolism of LDL and it inhibits the hepatic synthesis of VLDL, thereby reducing the total number of VLDL and LDL particles.

Pharmacodynamic effects

Crestor reduces elevated LDL-cholesterol, total cholesterol and triglycerides and increases HDL- cholesterol. It also lowers ApoB, non-HDL-C, VLDL-C, VLDL-TG and increases ApoA-I (see Table 3).
Crestor also lowers the LDL-C/HDL-C, total C/HDL-C and non-HDL-C/HDL-C and the ApoB/ApoA-I ratios.
Table 3 Dose response in patients with primary hypercholesterolaemia (type IIa and IIb) (adjusted mean percent change from baseline)
Dose      N    LDL-C Total-C HDL-C TG nonHDL-C Apo                  ApoA-I B
Placebo    13    -7        -5         3         -3     -7            -3      0 5          17    -45       -33        13        -35    -44           -38     4 10         17    -52       -36        14        -10    -48           -42     4   20         17    -55       -40        8         -23    -51           -46     5
40         18    -63       -46        10        -28    -60           -54     0

A therapeutic effect is obtained within 1 week following treatment initiation and 90% of maximum response is achieved in 2 weeks. The maximum response is usually achieved by 4 weeks and is maintained after that.

Clinical efficacy and safety

Crestor is effective in adults with hypercholesterolaemia, with and without hypertriglyceridaemia, regardless of race, sex, or age and in special populations such as diabetics, or patients with familial hypercholesterolaemia.

From pooled phase III data, Crestor has been shown to be effective at treating the majority of patients with type IIa and IIb hypercholesterolaemia (mean baseline LDL-C about 4.8 mmol/l) to recognised European Atherosclerosis Society (EAS; 1998) guideline targets; about 80% of patients treated with 10 mg reached the EAS targets for LDL-C levels (<3 mmol/l).

In a large study, 435 patients with heterozygous familial hypercholesterolaemia were given Crestor from 20 mg to 80 mg in a force-titration design. All doses showed a beneficial effect on lipid parameters and treatment to target goals. Following titration to a daily dose of 40 mg (12 weeks of treatment), LDL-C was reduced by 53%. Thirty-three percent (33%) of patients reached EAS guidelines for LDL-C levels (<3 mmol/L).

In a force-titration, open label trial, 42 patients with homozygous familial hypercholesterolaemia were evaluated for their response to Crestor 20 - 40 mg. In the overall population, the mean LDL-C reduction was 22%.

In clinical studies with a limited number of patients, Crestor has been shown to have additive efficacy in lowering triglycerides when used in combination with fenofibrate and in increasing HDL-C levels when used in combination with niacin (see Section 4.4).


In a multi-centre, double-blind, placebo-controlled clinical study (METEOR), 984 patients between 45 and 70 years of age and at low risk for coronary heart disease (defined as Framingham risk <10% over 10 years), with a mean LDL-C of 4.0 mmol/l (154.5 mg/dL), but with subclinical atherosclerosis (detected by Carotid Intima Media Thickness) were randomised to 40 mg rosuvastatin once daily or placebo for 2 years. Rosuvastatin significantly slowed the rate of progression of the maximum CIMT for the 12 carotid 
 artery sites compared to placebo by -0.0145 mm/year [95% confidence interval -0.0196, -0.0093; p<0.0001]. The change from baseline was -0.0014 mm/year (-0.12%/year (non-significant)) for rosuvastatin compared to a progression of +0.0131 mm/year (1.12%/year (p<0.0001)) for placebo. No direct correlation between CIMT decrease and reduction of the risk of cardiovascular events has yet been demonstrated. The population studied in METEOR is low risk for coronary heart disease and does not represent the target population of Crestor 40 mg. The 40 mg dose should only be prescribed in patients with severe hypercholesterolaemia at high cardiovascular risk (see Section 4.2).

In the Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) study, the effect of rosuvastatin on the occurrence of major atherosclerotic cardiovascular disease events was assessed in 17,802 men (≥50 years) and women (≥60 years).
Study participants were randomly assigned to placebo (n=8901) or rosuvastatin 20 mg once daily (n=8901) and were followed for a mean duration of 2 years.

LDL-cholesterol concentration was reduced by 45% (p<0.001) in the rosuvastatin group compared to the placebo group.

In a post-hoc analysis of a high-risk subgroup of subjects with a baseline Framingham risk score >20% (1558 subjects) there was a significant reduction in the combined end-point of cardiovascular death, stroke and myocardial infarction (p=0.028) on rosuvastatin treatment versus placebo. The absolute risk reduction in the event rate per 1000 patient-years was 8.8. Total mortality was unchanged in this high risk group (p=0.193). In a post-hoc analysis of a high-risk subgroup of subjects (9302 subjects total) with a baseline SCORE risk ≥5% (extrapolated to include subjects above 65 yrs) there was a significant reduction in the combined end-point of cardiovascular death, stroke and myocardial infarction (p=0.0003) on rosuvastatin treatment versus placebo. The absolute risk reduction in the event rate was 5.1 per 1000 patient-years. Total mortality was unchanged in this high risk group (p=0.076).

In the JUPITER trial there were 6.6% of rosuvastatin and 6.2% of placebo subjects who discontinued use of study medication due to an adverse event. The most common adverse events that led to treatment discontinuation were: myalgia (0.3% rosuvastatin, 0.2% placebo), abdominal pain (0.03% rosuvastatin, 0.02% placebo) and rash (0.02% rosuvastatin, 0.03% placebo). The most common adverse events at a rate greater than or equal to placebo were urinary tract infection (8.7% rosuvastatin, 8.6% placebo), nasopharyngitis (7.6% rosuvastatin, 7.2% placebo), back pain (7.6% rosuvastatin, 6.9% placebo) and myalgia (7.6% rosuvastatin, 6.6% placebo).


Pharmacokinetic Properties

5.2      Pharmacokinetic properties
Absorption: Maximum rosuvastatin plasma concentrations are achieved approximately 5 hours after oral administration. The absolute bioavailability is approximately 20%.

Distribution: Rosuvastatin is taken up extensively by the liver which is the primary site of cholesterol synthesis and LDL-C clearance. The volume of distribution of rosuvastatin is approximately 134 L.
Approximately 90% of rosuvastatin is bound to plasma proteins, mainly to albumin.

Metabolism: Rosuvastatin undergoes limited metabolism (approximately 10%). In vitro metabolism studies using human hepatocytes indicate that rosuvastatin is a poor substrate for cytochrome P450- based metabolism. CYP2C9 was the principal isoenzyme involved, with 2C19, 3A4 and 2D6 involved to a lesser extent. The main metabolites identified are the N-desmethyl and lactone metabolites. The N- desmethyl metabolite is approximately 50% less active than rosuvastatin whereas the lactone form is considered clinically inactive. Rosuvastatin accounts for greater than 90% of the circulating HMG-CoA reductase inhibitor activity.

Excretion: Approximately 90% of the rosuvastatin dose is excreted unchanged in the faeces (consisting of absorbed and non-absorbed active substance) and the remaining part is excreted in urine.
Approximately 5% is excreted unchanged in urine. The plasma elimination half-life is approximately 19 hours. The elimination half-life does not increase at higher doses. The geometric mean plasma clearance is approximately 50 litres/hour (coefficient of variation 21.7%). As with other HMG-CoA reductase inhibitors, the hepatic uptake of rosuvastatin involves the membrane transporter OATP-C. This transporter is important in the hepatic elimination of rosuvastatin.

Linearity: Systemic exposure of rosuvastatin increases in proportion to dose. There are no changes in pharmacokinetic parameters following multiple daily doses.

Special populations:

Age and sex: There was no clinically relevant effect of age or sex on the pharmacokinetics of rosuvastatin in adults.

Race: Pharmacokinetic studies show an approximate 2-fold elevation in median AUC and Cmax in Asian subjects (Japanese, Chinese, Filipino, Vietnamese and Koreans) compared with Caucasians; Asian- Indians show an approximate 1.3-fold elevation in median AUC and Cmax. A population pharmacokinetic analysis revealed no clinically relevant differences in pharmacokinetics between Caucasian and Black groups.
Renal insufficiency: In a study in subjects with varying degrees of renal impairment, mild to moderate renal disease had no influence on plasma concentration of rosuvastatin or the N-desmethyl metabolite.
Subjects with severe impairment (CrCl <30 ml/min) had a 3-fold increase in plasma concentration and a 9-fold increase in the N-desmethyl metabolite concentration compared to healthy volunteers. Steady-state plasma concentrations of rosuvastatin in subjects undergoing haemodialysis were approximately 50% greater compared to healthy volunteers.

Hepatic insufficiency: In a study with subjects with varying degrees of hepatic impairment there was no evidence of increased exposure to rosuvastatin in subjects with Child-Pugh scores of 7 or below.
However, two subjects with Child-Pugh scores of 8 and 9 showed an increase in systemic exposure of at least 2-fold compared to subjects with lower Child-Pugh scores. There is no experience in subjects with Child-Pugh scores above 9.

Genetic polymorphisms: Disposition of HMG-CoA reductase inhibitors, including rosuvastatin, involves OATP1B1 and BCRP transporter proteins. In patients with SLCO1B1 (OATP1B1) and/or ABCG2 (BCRP) genetic polymorphisms there is a risk of increased rosuvastatin exposure. Individual polymorphisms of SLCO1B1 c.521CC and ABCG2 c.421AA are associated with a higher rosuvastatin exposure (AUC) compared to the SLCO1B1 c.521TT or ABCG2 c.421CC genotypes. This specific genotyping is not established in clinical practice, but for patients who are known to have these types of polymorphisms, a lower daily dose of Crestor is recommended.

שימוש לפי פנקס קופ''ח כללית 1994 לא צוין
תאריך הכללה מקורי בסל 15/05/2006
הגבלות תרופה מוגבלת לרישום ע'י רופא מומחה או הגבלה אחרת

בעל רישום

ASTRAZENECA (ISRAEL) LTD

רישום

129 76 30800 00

מחיר

0 ₪

מידע נוסף

עלון מידע לרופא

06.03.12 - עלון לרופא 08.03.22 - עלון לרופא 27.02.23 - עלון לרופא 06.09.23 - עלון לרופא

עלון מידע לצרכן

06.03.12 - עלון לצרכן 11.08.20 - עלון לצרכן אנגלית 01.06.22 - עלון לצרכן אנגלית 01.06.22 - עלון לצרכן עברית 11.08.20 - עלון לצרכן ערבית 01.06.22 - עלון לצרכן ערבית 16.03.23 - עלון לצרכן 16.03.23 - עלון לצרכן אנגלית 16.03.23 - עלון לצרכן ערבית 06.09.23 - עלון לצרכן 14.11.23 - עלון לצרכן אנגלית 14.11.23 - עלון לצרכן ערבית 02.12.23 - עלון לצרכן 12.01.24 - עלון לצרכן אנגלית 12.01.24 - עלון לצרכן ערבית 21.02.12 - החמרה לעלון 01.05.12 - החמרה לעלון 20.12.12 - החמרה לעלון 12.08.13 - החמרה לעלון 26.03.14 - החמרה לעלון 20.10.15 - החמרה לעלון 05.09.23 - החמרה לעלון 13.07.21 - החמרה לעלון 08.03.22 - החמרה לעלון 27.02.23 - החמרה לעלון 06.09.23 - החמרה לעלון 02.12.23 - החמרה לעלון

לתרופה במאגר משרד הבריאות

קרסטור ® 40 מ"ג

קישורים נוספים

RxList WebMD Drugs.com