Quest for the right Drug

|
עמוד הבית / סאפריס 5 מ"ג / מידע מעלון לרופא

סאפריס 5 מ"ג SAPHRIS 5 MG (ASENAPINE AS MALEATE)

תרופה במרשם תרופה בסל נרקוטיקה ציטוטוקסיקה

צורת מתן:

פומי : PER OS

צורת מינון:

טבליות למתן מתחת ללשון : TABLETS SUBLINGUAL

Pharmacological properties : תכונות פרמקולוגיות

Pharmacodynamic Properties

12.2 Pharmacodynamics
Asenapine exhibits high affinity for serotonin 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5, 5-HT6, and 5-HT7 receptors (Ki values of 2.5, 4.0, 0.06, 0.16, 0.03, 1.6, 0.25, and 0.13 nM), dopamine D2, D3, D4, and D1 receptors (Ki values of 1.3, 0.42, 1.1, and 1.4 nM), α1 and α2-adrenergic receptors (Ki values of 1.2 and 1.2 nM), and histamine H1 receptors (Ki value 1.0 nM), and moderate affinity for H2 receptors (Ki 


25
value of 6.2 nM). In in vitro assays asenapine acts as an antagonist at these receptors. Asenapine has no appreciable affinity for muscarinic cholinergic receptors (e.g., Ki value of 8128 nM for M1).

Pharmacokinetic Properties

12.3 Pharmacokinetics
Following a single 5-mg dose of SAPHRIS, the mean Cmax was approximately 4 ng/mL and was observed at a mean tmax of 1 hour. Elimination of asenapine is primarily through direct glucuronidation by UGT1A4 and oxidative metabolism by cytochrome P450 isoenzymes (predominantly CYP1A2). Following an initial more rapid distribution phase, the mean terminal half-life is approximately 24 hrs. With multiple- dose twice-daily dosing, steady-state is attained within 3 days. Overall, steady-state asenapine pharmacokinetics are similar to single-dose pharmacokinetics.

Absorption: Following sublingual administration, asenapine is rapidly absorbed with peak plasma concentrations occurring within 0.5 to 1.5 hours. The absolute bioavailability of sublingual asenapine at 5 mg is 35%. Increasing the dose from 5 mg to 10 mg twice daily (a two-fold increase) results in less than linear (1.7 times) increases in both the extent of exposure and maximum concentration. The absolute bioavailability of asenapine when swallowed is low (<2% with an oral tablet formulation).

The intake of water several (2 or 5) minutes after asenapine administration resulted in decreased asenapine exposure. Therefore, eating and drinking should be avoided for 10 minutes after administration [see Dosage and Administration (2.1)].

Distribution: Asenapine is rapidly distributed and has a large volume of distribution (approximately 20 - 25 L/kg), indicating extensive extravascular distribution. Asenapine is highly bound (95%) to plasma proteins, including albumin and α1-acid glycoprotein.

Metabolism and Elimination: Direct glucuronidation by UGT1A4 and oxidative metabolism by cytochrome P450 isoenzymes (predominantly CYP1A2) are the primary metabolic pathways for asenapine.

Asenapine is a high clearance drug with a clearance after intravenous administration of 52 L/h. In this circumstance, hepatic clearance is influenced primarily by changes in liver blood flow rather than by changes in the intrinsic clearance, i.e., the metabolizing enzymatic activity. Following an initial more rapid distribution phase, the terminal half life of asenapine is approximately 24 hours. Steady-state concentrations of asenapine are reached within 3 days of twice daily dosing.

After administration of a single dose of [14C]-labeled asenapine, about 90% of the dose was recovered; approximately 50% was recovered in urine, and 40% recovered in feces. About 50% of the circulating species in plasma have been identified. The predominant species was asenapine N+- glucuronide; others included N-desmethylasenapine, N-desmethylasenapine N-carbamoyl glucuronide, and unchanged asenapine in smaller amounts. SAPHRIS activity is primarily due to the parent drug.



26
In vitro studies indicate that asenapine is a substrate for UGT1A4, CYP1A2 and to a lesser extent CYP3A4 and CYP2D6. Asenapine is a weak inhibitor of CYP2D6. Asenapine does not cause induction of CYP1A2 or CYP3A4 activities in cultured human hepatocytes. Coadministration of asenapine with known inhibitors, inducers or substrates of these metabolic pathways has been studied in a number of drug-drug interaction studies [see Drug Interactions (7)].

Smoking: A population pharmacokinetic analysis indicated that smoking, which induces CYP1A2, had no effect on the clearance of asenapine in smokers. In a crossover study in which 24 healthy male subjects (who were smokers) were administered a single 5-mg sublingual dose, concomitant smoking had no effect on the pharmacokinetics of asenapine.

Food: A crossover study in 26 healthy male subjects was performed to evaluate the effect of food on the pharmacokinetics of a single 5-mg dose of asenapine. Consumption of food immediately prior to sublingual administration decreased asenapine exposure by 20%; consumption of food 4 hours after sublingual administration decreased asenapine exposure by about 10%. These effects are probably due to increased hepatic blood flow.

In clinical trials establishing the efficacy and safety of SAPHRIS, patients were instructed to avoid eating for 10 minutes following sublingual dosing. There were no other restrictions with regard to the timing of meals in these trials [see Dosage and Administration (2.1) and Patient Counseling Information (17.1)].

Water: In clinical trials establishing the efficacy and safety of SAPHRIS, patients were instructed to avoid drinking for 10 minutes following sublingual dosing. The effect of water administration following 10- mg sublingual SAPHRIS dosing was studied at different time points of 2, 5, 10, and 30 minutes in 15 healthy male subjects. The exposure of asenapine following administration of water 10 minutes after sublingual dosing was equivalent to that when water was administered 30 minutes after dosing. Reduced exposure to asenapine was observed following water administration at 2 minutes (19% decrease) and 5 minutes (10% decrease) [see Dosage and Administration (2.1) and Patient Counseling Information (17.1)].

Special Populations:

Hepatic Impairment: The effect of decreased hepatic function on the pharmacokinetics of asenapine, administered as a single 5-mg sublingual dose, was studied in 30 subjects (8 each in those with normal hepatic function and Child-Pugh A and B groups, and 6 in the Child-Pugh C group). In subjects with mild or moderate hepatic impairment (Child-Pugh A or B), asenapine exposure was 12% higher than that in subjects with normal hepatic function, indicating that dosage adjustment is not required for these subjects. In subjects with severe hepatic impairment, asenapine exposures were on average 7 times higher than the exposures of those in subjects with normal hepatic function. Thus, SAPHRIS is not 


27
recommended in patients with severe hepatic impairment (Child-Pugh C) [see Dosage in Specific Populations (2.4) and Use in Specific Populations (8.7) and Warnings and Precautions (5.14)].

Renal Impairment: The effect of decreased renal function on the pharmacokinetics of asenapine was studied in subjects with mildly (creatinine clearance (CrCl) 51 to 80 mL/min; N=8), moderately (CrCl 30 to 50 mL/min; N=8), and severely (CrCl less than 30 mL/min but not on dialysis; N=8) impaired renal function and compared to normal subjects (CrCl greater than 80 mL/min; N=8). The exposure of asenapine following a single dose of 5 mg was similar among subjects with varying degrees of renal impairment and subjects with normal renal function. Dosage adjustment based upon degree of renal impairment is not required. The effect of renal function on the excretion of other metabolites and the effect of dialysis on the pharmacokinetics of asenapine has not been studied [see Use in Specific Populations (8.6)].

Geriatric Patients: In elderly patients with psychosis (65-85 years of age), asenapine concentrations were on average 30 to 40% higher compared to younger adults. When the range of exposures in the elderly was examined, the highest exposure for asenapine was up to 2-fold higher than the highest exposure in younger subjects. In a population pharmacokinetic analysis, a decrease in clearance with increasing age was observed, implying a 30% higher exposure in elderly as compared to adult patients [see Use in Specific Populations (8.5)].

Gender: The potential difference in asenapine pharmacokinetics between males and females was not studied in a dedicated trial. In a population pharmacokinetic analysis, no significant differences between genders were observed.

Race: In a population pharmacokinetic analysis, no effect of race on asenapine concentrations was observed. In a dedicated study, the pharmacokinetics of SAPHRIS were similar in Caucasian and Japanese subjects.

פרטי מסגרת הכללה בסל

1. הטיפול בתרופה האמורה יינתן לאחד מאלה: א. למבוטח בגיר שהוא חולה סכיזופרניה, ובהתקיים אחד מהתנאים האלה: 1. המטופל מוגדר כבעל קווי התנהגות תוקפניים, וכטיפול ראשון; 2. המטופל לא הגיב לטיפול בתרופה אנטי פסיכוטית אטיפית שניתנה לו כקו טיפול ראשון, או פיתח תופעות לוואי קשות לטיפול כאמור; ב. למבוטח קטין הסובל מסכיזופרניה או מפסיכוזה אחרת, וכטיפול ראשון; 2. התחלת הטיפול בתרופה תהיה על פי הוראתו של רופא מומחה בפסיכיאטריה או בפסיכיאטריה של הילד והמתבגר או בנוירולוגיה, לפי העניין.  3. לא יינתנו לחולה בו בזמן שתי תרופות או יותר ממשפחת התרופות האנטיפסיכוטיות האטיפיות.
שימוש לפי פנקס קופ''ח כללית 1994 לא צוין
תאריך הכללה מקורי בסל 12/01/2014
הגבלות תרופה מוגבלת לרישום ע'י רופא מומחה או הגבלה אחרת

רישום

146 04 33228 00

מחיר

0 ₪

מידע נוסף

עלון מידע לרופא

24.04.12 - עלון לרופא

עלון מידע לצרכן

03.09.15 - עלון לצרכן אנגלית 03.09.15 - עלון לצרכן עברית 03.09.15 - עלון לצרכן ערבית 01.12.11 - החמרה לעלון

לתרופה במאגר משרד הבריאות

סאפריס 5 מ"ג

קישורים נוספים

RxList WebMD Drugs.com