Quest for the right Drug
ג'נואט 50/1000 מ"ג XR טבליות JANUET XR 50/1000 MG TABLETS (METFORMIN HYDROCHLORIDE, SITAGLIPTIN AS PHOSPHATE SALT)
תרופה במרשם
תרופה בסל
נרקוטיקה
ציטוטוקסיקה
צורת מתן:
פומי : PER OS
צורת מינון:
טבליות עם שחרור נרחב : TABLETS EXTENDED RELEASE
עלון לרופא
מינוניםPosology התוויות
Indications תופעות לוואי
Adverse reactions התוויות נגד
Contraindications אינטראקציות
Interactions מינון יתר
Overdose הריון/הנקה
Pregnancy & Lactation אוכלוסיות מיוחדות
Special populations תכונות פרמקולוגיות
Pharmacological properties מידע רוקחי
Pharmaceutical particulars אזהרת שימוש
Special Warning עלון לרופא
Physicians Leaflet
Pharmacological properties : תכונות פרמקולוגיות
Pharmacodynamic Properties
12.2 Pharmacodynamics Sitagliptin In patients with type 2 diabetes mellitus, administration of sitagliptin led to inhibition of DPP-4 enzyme activity for a 24-hour period. After an oral glucose load or a meal, this DPP-4 inhibition resulted in a 2- to 3-fold increase in circulating levels of active GLP-1 and GIP, decreased glucagon concentrations, and increased responsiveness of insulin release to glucose, resulting in higher C-peptide and insulin concentrations. The rise in insulin with the decrease in glucagon was associated with lower fasting glucose concentrations and reduced glucose excursion following an oral glucose load or a meal. In studies with healthy subjects, sitagliptin did not lower blood glucose or cause hypoglycemia. Sitagliptin and Metformin Coadministration In a two-day study in healthy subjects, sitagliptin alone increased active GLP-1 concentrations, whereas metformin alone increased active and total GLP-1 concentrations to similar extents. Coadministration of sitagliptin and metformin had an additive effect on active GLP-1 concentrations. Sitagliptin, but not metformin, increased active GIP concentrations. It is unclear what these findings mean for changes in glycemic control in patients with type 2 diabetes mellitus. Cardiac Electrophysiology In a randomized, placebo-controlled crossover study, 79 healthy subjects were administered a single oral dose of sitagliptin 100 mg, sitagliptin 800 mg (8 times the recommended dose), and placebo. At the recommended dose of 100 mg, there was no effect on the QTc interval obtained at the peak plasma concentration, or at any other time during the study. Following the 800-mg dose, the maximum increase in the placebo-corrected mean change in QTc from baseline at 3 hours postdose was 8.0 msec. This increase is not considered to be clinically significant. At the 800-mg dose, peak sitagliptin plasma concentrations were approximately 11 times higher than the peak concentrations following a 100-mg dose. In patients with type 2 diabetes mellitus administered sitagliptin 100 mg (N=81) or sitagliptin 200 mg (N=63) daily, there were no meaningful changes in QTc interval based on ECG data obtained at the time of expected peak plasma concentration.
Pharmacokinetic Properties
12.3 Pharmacokinetics JANUET XR After administration of two JANUET XR 50 mg/1000 mg tablets once daily with the evening meal for 7 days in healthy adult subjects, steady-state for sitagliptin and metformin is reached by Day 4 and 5, respectively. Sitagliptin The pharmacokinetics of sitagliptin have been extensively characterized in healthy subjects and patients with type 2 diabetes mellitus. Following a single oral 100-mg dose to healthy volunteers, mean plasma AUC of sitagliptin was 8.52 µM•hr, Cmax was 950 nM, and apparent terminal half-life (t1/2) was 12.4 hours. Plasma AUC of sitagliptin increased in a dose-proportional manner and increased approximately 14% following 100 mg doses at steady-state compared to the first dose. The intra-subject and inter-subject coefficients of variation for sitagliptin AUC were small (5.8% and 15.1%). The pharmacokinetics of sitagliptin was generally similar in healthy subjects and in patients with type 2 diabetes mellitus. Absorption JANUET XR After administration of JANUET XR tablets once daily, the median Tmax value for sitagliptin and metformin at steady state is approximately 3 and 8 hours postdose, respectively. The median Tmax value for sitagliptin and metformin after administration of a single tablet of JANUET is 3 and 3.5 hours postdose, respectively. Effect of Food After administration of JANUET XR tablets with a high-fat breakfast, the AUC for sitagliptin was not altered. The mean Cmax was decreased by 17%, although the median Tmax was unchanged relative to the fasted state. After administration of JANUET XR with a high-fat breakfast, the AUC for metformin increased 62%, the Cmax for metformin decreased by 9%, and the median Tmax for metformin occurred 2 hours later relative to the fasted state. Sitagliptin After oral administration of a 100 mg dose to healthy subjects, sitagliptin was rapidly absorbed with peak plasma concentrations (median Tmax) occurring 1 to 4 hours postdose. The absolute bioavailability of sitagliptin is approximately 87%. Effect of Food Coadministration of a high-fat meal with sitagliptin had no effect on the pharmacokinetics of sitagliptin. Metformin The absolute bioavailability of a metformin HCl 500-mg tablet given under fasting conditions is approximately 50-60%. Studies using single oral doses of metformin HCl tablets 500 mg to 1,500 mg, and 850 mg to 2,550 mg (approximately 1.3 times the maximum recommended daily dosage), indicate that there is a lack of dose proportionality with increasing doses, which is due to decreased absorption rather than an alteration in elimination. Effect of Food Food decreases the extent of and slightly delays the absorption of metformin, as shown by approximately a 40% lower mean peak plasma concentration (Cmax), a 25% lower area under the plasma concentration versus time curve (AUC), and a 35-minute prolongation of time to peak plasma concentration (Tmax) following administration of a single 850-mg tablet of metformin HCl with food, compared to the same tablet strength administered fasting. The clinical relevance of these decreases is unknown. Distribution Sitagliptin The mean volume of distribution at steady state following a single 100-mg intravenous dose of sitagliptin to healthy subjects is approximately 198 liters. The fraction of sitagliptin reversibly bound to plasma proteins is low (38%). Metformin Distribution studies with extended-release metformin have not been conducted; however, the apparent volume of distribution (V/F) of metformin following single oral doses of immediate-release metformin HCl tablets 850 mg averaged 654 ± 358 L. Metformin is negligibly bound to plasma proteins. Metformin partitions into erythrocytes, most likely as a function of time. At usual clinical doses and dosing schedules of metformin tablets, steady-state plasma concentrations of metformin are reached within 24-48 hours and are generally <1 mcg/mL. Elimination Sitagliptin Approximately 79% of sitagliptin is excreted unchanged in the urine with metabolism being a minor pathway of elimination. The apparent terminal t1/2 following a 100 mg oral dose of sitagliptin was approximately 12.4 hours and renal clearance was approximately 350 mL/min. Metformin Following oral administration, approximately 90% of the absorbed drug is eliminated via the renal route within the first 24 hours, with a plasma elimination half-life of approximately 6.2 hours. In blood, the elimination half-life is approximately 17.6 hours, suggesting that the erythrocyte mass may be a compartment of distribution. Metabolism Sitagliptin Following a [14C]sitagliptin oral dose, approximately 16% of the radioactivity was excreted as metabolites of sitagliptin. Six metabolites were detected at trace levels and are not expected to contribute to the plasma DPP-4 inhibitory activity of sitagliptin. In vitro studies indicated that the primary enzyme responsible for the limited metabolism of sitagliptin was CYP3A4, with contribution from CYP2C8. Metformin Intravenous single-dose studies in normal subjects demonstrate that metformin is excreted unchanged in the urine and does not undergo hepatic metabolism (no metabolites have been identified in humans) or biliary excretion. Metabolism studies with extended-release metformin tablets have not been conducted. Excretion Sitagliptin Following administration of an oral [14C]sitagliptin dose to healthy subjects, approximately 100% of the administered radioactivity was eliminated in feces (13%) or urine (87%) within one week of dosing. Elimination of sitagliptin occurs primarily via renal excretion and involves active tubular secretion. Sitagliptin is a substrate for human organic anion transporter-3 (hOAT-3), which may be involved in the renal elimination of sitagliptin. The clinical relevance of hOAT-3 in sitagliptin transport has not been established. Sitagliptin is also a substrate of p-glycoprotein (P-gp), which may also be involved in mediating the renal elimination of sitagliptin. However, cyclosporine, a P-gp inhibitor, did not reduce the renal clearance of sitagliptin. Metformin Elimination of metformin occurs primarily via renal excretion. Renal clearance is approximately 3.5 times greater than creatinine clearance, which indicates that tubular secretion is the major route of metformin elimination. Specific Populations Patients with Renal Impairment JANUET XR Studies characterizing the pharmacokinetics of sitagliptin and metformin after administration of JANUET XR in renally impaired patients have not been performed [see Dosage and Administration (2.2)]. Sitagliptin An approximately 2-fold increase in the plasma AUC of sitagliptin was observed in patients with moderate renal impairment with eGFR of 30 to less than 45 mL/min/1.73 m2, and an approximately 4-fold increase was observed in patients with severe renal impairment including patients with end-stage renal disease (ESRD) on hemodialysis, as compared to normal healthy control subjects. [See Dosage and Administration (2.2)]. Metformin In patients with decreased renal function, the plasma and blood half-life of metformin is prolonged and the renal clearance is decreased [see Contraindications (4), Warnings and Precautions (5.1)]. Patients with Hepatic Impairment JANUET XR Studies characterizing the pharmacokinetics of sitagliptin and metformin after administration of JANUET XR in patients with hepatic impairment have not been performed. Sitagliptin In patients with moderate hepatic impairment (Child-Pugh score 7 to 9), mean AUC and Cmax of sitagliptin increased approximately 21% and 13%, respectively, compared to healthy matched controls following administration of a single 100-mg dose of sitagliptin. These differences are not considered to be clinically meaningful. There is no clinical experience in patients with severe hepatic impairment (Child-Pugh score >9) [see Use in Specific Populations (8.7)]. Metformin No pharmacokinetic studies of metformin have been conducted in patients with hepatic impairment. Effects of Age, Body Mass Index (BMI), Gender, and Race Sitagliptin Based on a population pharmacokinetic analysis or a composite analysis of available pharmacokinetic data, BMI, gender, and race do not have a clinically meaningful effect on the pharmacokinetics of sitagliptin. When the effects of age on renal function are taken into account, age alone did not have a clinically meaningful impact on the pharmacokinetics of sitagliptin based on a population pharmacokinetic analysis. Elderly subjects (65 to 80 years) had approximately 19% higher plasma concentrations of sitagliptin compared to younger subjects. Metformin Limited data from controlled pharmacokinetic studies of metformin in healthy elderly subjects suggest that total plasma clearance of metformin is decreased, the half-life is prolonged, and Cmax is increased, compared to healthy young subjects. From these data, it appears that the change in metformin pharmacokinetics with aging is primarily accounted for by a change in renal function. Metformin pharmacokinetic parameters did not differ significantly between normal subjects and patients with type 2 diabetes mellitus when analyzed according to gender. Similarly, in controlled clinical studies in patients with type 2 diabetes mellitus, the antihyperglycemic effect of metformin was comparable in males and females. No studies of metformin pharmacokinetic parameters according to race have been performed. In controlled clinical studies of metformin in patients with type 2 diabetes mellitus, the antihyperglycemic effect was comparable in Whites (n=249), Blacks (n=51), and Hispanics (n=24). Drug Interaction Studies JANUET XR Coadministration of multiple doses of sitagliptin (50 mg) and metformin HCl (1000 mg) given twice daily did not meaningfully alter the pharmacokinetics of either sitagliptin or metformin in patients with type 2 diabetes. Pharmacokinetic drug interaction studies with JANUET XR have not been performed; however, such studies have been conducted with the individual components of JANUET XR (sitagliptin and metformin extended-release). Sitagliptin In Vitro Assessment of Drug Interactions Sitagliptin is not an inhibitor of CYP isozymes CYP3A4, 2C8, 2C9, 2D6, 1A2, 2C19 or 2B6, and is not an inducer of CYP3A4. Sitagliptin is a P-gp substrate, but does not inhibit P-gp mediated transport of digoxin. Based on these results, sitagliptin is considered unlikely to cause interactions with other drugs that utilize these pathways. Sitagliptin is not extensively bound to plasma proteins. Therefore, the propensity of sitagliptin to be involved in clinically meaningful drug-drug interactions mediated by plasma protein binding displacement is very low. In Vivo Assessment of Drug Interactions Effects of Sitagliptin on Other Drugs In clinical studies, sitagliptin did not meaningfully alter the pharmacokinetics of metformin, glyburide, simvastatin, rosiglitazone, digoxin, warfarin, or an oral contraception (ethinyl estradiol and norethindrone) (Table 5), providing in vivo evidence of a low propensity for causing drug interactions with substrates of CYP3A4, CYP2C8, CYP2C9, P-gp, and organic cationic transporter (OCT). Table 5: Effect of Sitagliptin on Systemic Exposure of Coadministered Drugs Coadministered Drug Dose of Dose of Geometric Mean Ratio Coadministered Sitagliptin* (ratio with/without sitagliptin) Drug* No Effect = 1.00 AUC† Cmax Digoxin 0.25 mg‡ once daily 100 mg‡ once daily Digoxin 1.11§ 1.18 for 10 days for 10 days Glyburide 1.25 mg 200 mg‡ once daily Glyburide 1.09 1.01 for 6 days Simvastatin 20 mg 200 mg‡ once daily Simvastatin 0.85¶ 0.80 for 5 days Simvastatin Acid 1.12¶ 1.06 Rosiglitazone 4 mg 200 mg‡ once daily Rosiglitazone 0.98 0.99 for 5 days Warfarin 30 mg single dose on 200 mg‡ once daily S(-) Warfarin 0.95 0.89 day 5 for 11 days R(+) Warfarin 0.99 0.89 Ethinyl estradiol and 21 days once daily of 200 mg‡ once daily Ethinyl estradiol 0.99 0.97 norethindrone 35 µg ethinyl for 21 days Norethindrone 1.03 0.98 estradiol with norethindrone 0.5 mg x 7 days, 0.75 mg x 7 days, 1.0 mg x 7 days Metformin HCl 1000 mg‡ twice daily 50 mg‡ twice daily Metformin 1.02# 0.97 for 14 days for 7 days * All doses administered as single dose unless otherwise specified. † AUC is reported as AUC0-∞ unless otherwise specified. ‡ Multiple dose. § AUC0-24hr. ¶ AUC0-last. # AUC0-12hr. Effects of Other Drugs on Sitagliptin Clinical data described below suggest that sitagliptin is not susceptible to clinically meaningful interactions by coadministered medications (Table 6). Table 6: Effect of Coadministered Drugs on Systemic Exposure of Sitagliptin Coadministered Dose of Dose of Sitagliptin* Geometric Mean Ratio Drug Coadministered (ratio with/without coadministered drug) Drug* No Effect = 1.00 AUC† Cmax Cyclosporine 600 mg once daily 100 mg once daily Sitagliptin 1.29 1.68 Metformin HCl 1000 mg‡ twice daily 50 mg‡ twice daily for Sitagliptin 1.02§ 1.05 for 14 days 7 days * All doses administered as single dose unless otherwise specified. † AUC is reported as AUC0-∞ unless otherwise specified. ‡ Multiple dose. § AUC0-12hr. Metformin Table 7: Effect of Metformin on Systemic Exposure of Coadministered Drugs Coadministered Drug Dose of Dose of Metformin Geometric Mean Ratio Coadministered HCl* (ratio with/without metformin) Drug* No Effect = 1.00 AUC† Cmax Cimetidine 400 mg 850 mg Cimetidine 0.95‡ 1.01 Glyburide 5 mg 500 mg§ Glyburide 0.78¶ 0.63¶ Furosemide 40 mg 850 mg Furosemide 0.87¶ 0.69¶ Nifedipine 10 mg 850 mg Nifedipine 1.10‡ 1.08 Propranolol 40 mg 850 mg Propranolol 1.01‡ 0.94 Ibuprofen 400 mg 850 mg Ibuprofen 0.97# 1.01# * All doses administered as single dose unless otherwise specified † AUC is reported as AUC0-∞ unless otherwise specified ‡ AUC0-24hr § GLUMETZA (metformin HCl extended-release tablets) 500 mg ¶ Ratio of arithmetic means, p value of difference <0.05 # Ratio of arithmetic means Table 8: Effect of Coadministered Drugs on Systemic Exposure of Metformin Coadministered Dose of Dose of Geometric Mean Ratio Drug Coadministered Metformin HCl* (ratio with/without coadministered drug) Drug* No Effect = 1.00 AUC† Cmax Glyburide 5 mg 500 mg‡ Metformin‡ 0.98§ 0.99§ Furosemide 40 mg 850 mg Metformin 1.09§ 1.22§ Nifedipine 10 mg 850 mg Metformin 1.16 1.21 Propranolol 40 mg 850 mg Metformin 0.90 0.94 Ibuprofen 400 mg 850 mg Metformin 1.05§ 1.07§ Drugs that are eliminated by renal tubular secretion may increase the accumulation of metformin. [See Warnings and Precautions (5.1) and Drug Interactions (7).] Cimetidine 400 mg 850 mg Metformin 1.40 1.61 Carbonic anhydrase inhibitors may cause metabolic acidosis [See Warnings and Precautions (5.1) and Drug Interactions (7).] Topiramate 100 mg¶ 500 mg¶ Metformin 1.25¶ 1.17 * All doses administered as single dose unless otherwise specified † AUC is reported as AUC0-∞ unless otherwise specified ‡ GLUMETZA (metformin HCl extended-release tablets) 500 mg § Ratio of arithmetic means ¶ Steady state 100 mg Topiramate every 12 hr + metformin HCl 500 mg every 12 hr. AUC = AUC0-12hr
שימוש לפי פנקס קופ''ח כללית 1994
לא צוין
תאריך הכללה מקורי בסל
לא צוין
הגבלות
לא צוין
רישום
151 32 33933 02
מחיר
0 ₪
מידע נוסף